Medullary dorsal horn neuronal activity in rats with persistent temporomandibular joint and perioral inflammation.

نویسندگان

  • K Iwata
  • A Tashiro
  • Y Tsuboi
  • T Imai
  • R Sumino
  • T Morimoto
  • R Dubner
  • K Ren
چکیده

Studies at spinal levels indicate that peripheral tissue or nerve injury induces a state of hyperexcitability of spinal dorsal horn neurons that participates in the development of persistent pain and hyperalgesia. It has not been demonstrated that persistent injury in the orofacial region leads to a similar state of central hyperexcitability in the trigeminal system. The purpose of the present study was to conduct a parametric analysis of the response properties of nociceptive and nonnociceptive neurons in trigeminal nucleus caudalis (medullary dorsal horn, MDH) in a rat model of persistent orofacial inflammation. Neurons were recorded extracellularly and classified as low-threshold mechanoreceptive (LTM, n = 49), wide dynamic range (WDR, n = 82), and nociceptive-specific (NS, n = 11) neurons according to their response properties to mechanical stimuli applied to their cutaneous receptive fields (RFs). The inflammation was induced 24 h before the recordings by injecting complete Freund's adjuvant (CFA) into the temporomandibular joint (TMJ) capsule or the perioral (PO) skin. The mean areas of the high-threshold RFs of WDR neurons in TMJ (8.66 +/- 0.61 cm(2), n = 25) and PO (5.61 +/- 2.07 cm(2), n = 25) inflamed rats were significantly larger than those in naive rats (1.10 +/- 0. 16 cm(2), n = 32). The mean RF size in TMJ-inflamed rats also was significantly larger than that in PO-inflamed rats (P < 0.01). Furthermore the mean area of the RFs of NS neurons (3.74 +/- 1.44 cm(2), n = 5) was significantly larger in TMJ inflamed rats as compared with naive rats (0.4 +/- 0.09 cm(2), n = 3) (P < 0.05). The background activity in the TMJ- and PO-inflamed rats was generally greater in WDR and NS neurons, but less in LTM neurons, when compared with naive rats. The responses of WDR neurons to noxious mechanical stimuli were increased significantly in TMJ-inflamed rats (P < 0.05) as compared with naive rats. WDR neuronal responses to mechanical stimulation also were increased in PO-inflamed rats but to a lesser extent than in TMJ-inflamed rats. The injection of CFA into the TMJ or PO skin resulted in reduced responses of LTM neurons to mechanical stimuli. The responses of MDH nociceptive neurons to 48-55 degrees C heating were greater in inflamed rats as compared with naive rats. A subpopulation of WDR neurons recorded from TMJ (n = 4 of 10)- or PO (n = 3 of 13)-injected rats responded to cooling in addition to heating of the RFs but did not grade their responses with changes in stimulus intensity. These results indicate that persistent orofacial inflammation produced hyperexcitability of MDH nociceptive neurons. TMJ inflammation resulted in more robust changes in MDH nociceptive neurons as compared with PO inflammation, consistent with previous studies of increased inflammation, increased MDH Fos-protein expression, and increased MDH preprodynorphin mRNA expression in this deep tissue orofacial model of pain and hyperalgesia. The inflammation-induced MDH hyperexcitability may contribute to mechanisms of persistent pain associated with orofacial deep tissue painful conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinal neuronal plasticity is evident within 1 day after a painful cervical facet joint injury.

Excessive stretch of the cervical facet capsular ligament induces persistent pain and spinal plasticity at later time points. Yet, it is not known when such spinal modifications are initiated following this painful injury. This study investigates the development of hyperalgesia and neuronal hyperexcitability in the spinal cord after a facet joint injury. Behavioral sensitivity was measured in a...

متن کامل

Activation of trigeminal intranuclear pathway in rats with temporomandibular joint inflammation.

We examined the anatomical connections of trigeminal neurons between the trigeminal subnuclei interpolaris/caudalis (Vi/Vc) transition and caudal subnucleus caudalis/upper cervical dorsal horn (Vc/C(1,2)) zones in rats, using the fluorogold (FG) retrograde tracing method combined with Fos expression, a marker of neuronal activation, following temporomandibular joint (TMJ) inflammation. The head...

متن کامل

TMJ inflammation increases Fos expression in the nucleus raphe magnus induced by subsequent formalin injection of the masseter or hindpaw of rats.

The study was designed to examine the effect of persistent temporomandibular joint (TMJ) inflammation on neuronal activation in the descending pain modulatory system in response to noxious stimulus. Formalin was injected into the left masseter muscle or hindpaw of rats 10 days after injection of the left TMJ with saline or complete Freund's adjuvant (CFA). The results showed that 10-day persist...

متن کامل

Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat

BACKGROUND Central sensitization requires the activation of various intracellular signalling pathways within spinal dorsal horn neurons, leading to a lowering of activation threshold and enhanced responsiveness of these cells. Such plasticity contributes to the manifestation of chronic pain states and displays a number of features of long-term potentiation (LTP), a ubiquitous neuronal mechanism...

متن کامل

Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat

We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is kno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 1999